UNIVERSITAT
KOBLENZ - LANDAU

Fast, Neat and Under Control:
Inverse Steering Behaviors for
Physical Autonomous Agents

Heni Ben Amor, Oliver Obst, Jan Murray

12/2003

e © |
== == Fachberichte

CT—
= INFORMATIK

Universitat Koblenz-Landau
Institut fUr Informatik, Universitatsstr. 1, D-56070 Koblenz

E-mail: researchreports@uni-koblenz.de
WWW: http://www.uni-koblenz.de/fb4/

Fast, Neat and Under Control: Inverse Steering
Behaviors for Physical Autonomous Agents

Heni Ben Amor, Oliver Obst, Jan Murray

Universitt Koblenz-Landau
Arbeitsgruppe Kinstliche Intelligenz

{amor,fruit, murray }@uni-koblenz.de

April 18, 2003

Steering behaviors are a set of motion based reactive procedures used for nav-
igating autonomous agents in their environment. Combinations of steering behav-
iors can be used to create complex behaviors. One problem inherent to existing
approaches to arbitrating between single behaviors is that their combination may
lead to suboptimal, undesired, or even catastrophic results in certain situations. In
our paper we present a solution to these problems by introducing inverse steer-
ing behaviors for controlling physical agents. Inverse steering behaviors change the
original concept of steering behaviors and facilitate improved arbitration between
different options by using cost based heuristics.

We also show a concrete application of inverse steering behaviors, namely the
implementation of a dribbling skill with sophisticated obstacle avoidance for a
RoboCup soccer agent.

1 Introduction

Highly dynamic environments are a big challenge for mobile robotic systems. This is especially
true when robots not only have to avoid obstacles but also have to continue pursuing a differ-
ent task at the same time, or when adversaries are actively trying to stop them from reaching
a certain place. On the one hand, robots have to be very reactive with respect to changes in
the environment. On the other hand, being reactive alone is not enough to fulfill certain tasks

*This research is supported by the graais263/6-1andFu-263/8-1from the German research foundatibRG.

2 About Steering Behaviors 2

efficiently. To implement robotic agents that behave both reactive and goal directed these two is-
sues are usually separated into a reactive and a deliberative layer. Steering béRayinadds,

1987 are a way to implement the reactive part in physical automous agents. Complex steering
behaviors are created by combining several simple ones. In our paper we address drawbacks of
the original steering behaviors we became aware of when implementing agents for RoboCup
Soccer Simulation LeagU®&lodaet al., 1999.

The rest of the paper is organized as follows. In Sections 2 and 3 a brief summary of steering
behaviors and their limitations is presented. In Sec. 4 inverse steering behaviors are introduced.
Section 5 shows, how they can be used for navigation tasks. A concrete application, the im-
plementation of a dribbling skill for a RoboCup agent, is presented in Sec. 6. In Sec. 7 a short
overview over related work is given, before the paper finally is concluded with a summary and
an outlook to future work in Sec. 8.

2 About Steering Behaviors

Steeringis the reactive, non-deliberative movement of physical agwaseyeket al., 2003.
Reynolds[Reynolds, 199Pdefines a hierarchical model where steering is responsible for path
determination for autonomous characters in animations and games. In this hierarchy, the layer
below steering, called locomotion, is responsible for the actual implementation of steering goals.
The layer on top of steering, called action selection, represents the deliberative part of an au-
tonomous character and deals with selecting the appropriate strategies and plans.

A basic ingredient to steering aséeering behaviorgeactive procedures that take local infor-
mation about the environment as input, producing a steering vector (or steering goal) as output.
A set of basic steering behaviors presentefRaynolds, 199Pincludesseek, flee, pursuit, eva-
sion, containmentandobstacle avoidancor static obstacles.

To produce complex behaviors,e.g. flocking or queuing at a doorway, several steering behav-
iors can be combined with each other at a time. Each of the basic steering behaviors is executed
separately or in parallel, and the different steering goals have to be combined to one result that is
passed to the locomotion layer. Reynol&eynolds, 199Pproposes different ways of “blend-
ing” steering behaviors, e.g. using their weighted average or choosing only one behavior at a
time according to given priorities. A hybrid arbitration scheme using and extending these ideas
can be found ifReynolds, 198ffwhere it is calledorioritized acceleration allocationHere all
applicable behaviors are used in order of their priority, until the maximum amount of accelera-
tion is reached.

Example applications using steering behaviors are simulation of pedegffiamsey, 200D
and vehicle§Bonakdariaret al,, 1999 in urban environments, emergency evacuation of human
crowds[Helbinget al, 2004, and also autonomous characters in computer games and movies.

3 Limitations of Steering Behaviors 3

3 Limitations of Steering Behaviors

With steering behaviors complex tasks can be achieved by using a combination of several sim-
ple but specialized components. These specialized behaviors are developed manually to carry
out specific subtasks such as following a corridor, avoiding obstacles, or intercepting a moving
object. The combination process of these components poses several difficulties, as each behav-
ior makes its decision independently of the others. This can result in conflicting commands,
and depending on the arbitration method single behaviors can possibly cancel the effect of each
other out or result in suboptimal paths. The arbitration method of building a weighted average
of steering vectors shares its greatest disadvantages with potential field methods when used for
robot navigatiorfKoren and Borenstein, 1981

e Trap situations due to local minima (cyclic behavior).
e No passage between closely spaced obstacles.
e Oscillations in narrow passages or in the presence of obstacles.

Also priority based blending of behaviors as proposed by Reyri@&dgnolds, 199Pcauses
problems in many cases, so that constraints of some of the involved behaviors are violated.

In addition these behaviors lack any kindaointext awarenes®ecause of their limited com-
plexity and the focus on local information. The result of applying steering behaviors is a steering
vector which might violate other constraints of tasks to be performed. Usually, these constraints
are established again in subsequent steps by other steering behaviors. In some cases however, it
might be too late to fix the situation, for example an avoidance maneuver steering around one
obstacle may lead the performing agent into another close obstacle, as the spatial context in
which the behavior was triggered has not been taken into account previously. When the obstacle
avoidance is triggered the next time, the collsion might already have occurred.

One possible solution to this problem would bigh-level reasoningabout the effects of
each action generated in the reactive layer. In the layered model of Reynolds deliberation is
done in the action selection layer, so this solution amounts to lifting the tasks of the steering
layer to the action selection layer. In most cases reasoning about every single steering action is
computationally intractable. Additionally, in a very dynamic environment, planning each step
from start to a goal state is a waste of resources, because it is most likely that some or all parts of
a previously computed path will be invalidated in near future. Reactive behaviors are necessary
for efficiency, but a deliberative part is also important: due to their local nature reactive behaviors
are incapable of achieving global goals.

Because of this, a solution to our problem should ensure the decision autonomy of the reactive
layer. That means no precise steering instructions but only subgoals are communicated from the
action selection layer to the steering layer. We present a method talde steering behaviors
that changes the way steering behaviors are used and makes use of heuristics in the reactive
steering layer to keep the tradeoff between local and global decisions minimal.

4 Inverse Steering Behaviors 4

4 Inverse Steering Behaviors

To overcome the drawbacks mentioned in the last section, we extended the concept of steering
behaviors. In the original approach, steering behaviors only take facts about the environment as
input and produce a single steering vector as output. Our approach additionally takes a number
of different steering vectors as input denoting possible solutions for the steering task. Based
on a given criterion, each direction produces a certain cost. In turn, from the calculated cost
we produce a rating for each steering vector as output. In principle we inverted the process of
each single steering behavior, which is why we call our appraaarse steering behaviargo
execute a single behavior, the steering vector producing the smallest cost is selected.

To achieve complex tasks, several inverse steering behaviors can be combined similar to the
original approach. In our case the problem is not to combine different steering vectors or actions,
but to merge the ratings for each given direction. All relevant behaviors for a task have to be
executed, producing a rating for each given steering vector. Merging the ratings is achieved with
a heuristics combining ratings of all involved behaviors for each direction separatly. The result
of applying the heuristics for each given steering vector is a list of ratings like the one produced
by a single inverse steering behavior. Like in the case of single steering behaviors the “best”
action can be chosen by simply selecting the steering direction minimizing the cost.

The heuristics employed in the process of combining several behaviors is dependent on the
number of behaviors involved and specific to the complex task that has to be achieved. We are
going to illustrate building a sample heuristics in a subsequent section.

With an appropriate heuristics, merging the ratings for each single behavior can produce better
results than the original approach simply adding up steering vectors or selecting one. In cases
where two behaviors have conflicting desires, inverse steering behaviors will select a steering
vector obeying each of the behaviors to a degree, and thus make a reasonable compromise for
all involved behaviors.

5 Navigation Using Inverse Steering Behaviors

When using inverse steering behaviors the task of navigation in a cluttered environment is mod-
elled as a cost minimization problem. For both, the separate inverse steering behaviors and the
overall navigation task we create heuristic cost functions, based on which the quality of a given
solution can be measured. For a better understanding of the latter statements, we will subse-
qguently discuss a havigation example, where collision free paths are achieved using the obstacle
avoidance and seek (goal approaching) behavior.

In Figure 1 we see a particular situation, where a robot has to decide in which direction to
steer. The decision of the robot has to satisfy both his will of avoiding collisions and taking
the fastest way to the goal. Given the discrete{€gt6,,03,04} of steering directions to be
evaluated, we first apply the inverse steering behawbstacle avoidancandseekseparately.

These inverse steering behaviors assign each of the given directions a cost, with respect to a

5 Navigation Using Inverse Steering Behaviors 5

@ Destination
61 .

Figure 1: Evaluation of directions to avoid obstacles.

criterion related to the inherent task.

For instance the seek behavior assigns costs according to the difference between the direction
o denoting the straight path to the goal position and the currently processed dit&¢ctidrich
can be expressed using the formdja= ||a — 6;||. Consequently directiof, and 83 receive
fewer costs, as their deviation ¢ois smaller. In the subsequent sections we will refex s the
“optimistic optimal” direction. In contrast, the obstacle avoidance behavior assigns costs based
on the numbexg, of obstacles in the currently processed direction (cf. Fig. 2). As a r8sult
receives the cost value 1 due to an occurring obstacle, whéte@sand8, are obstacle free
and thus receive the cost value 0. However, the numeés hard to be derived analytically and
would lead to complex expressions defined over space. We tackle this problem by assigning each
direction a rectangular area using a function rectRe@jpn(hese rectangular areas represent a
possible path to be taken by the agent. The width and the length of each rectRegion are based
on the agent’s width and velocity. The faster he is, the sooner must he anticipate a potential
collision. This enables us to extract information about the existence of obstacles very easily
using a geometrical construction of the problem. The bounding sphere of each object in the near
range of the agent is intersected with the rectangular region of the currently processed direction
in order to determine if it lies inside this region. All objects that fulfill the last condition are
considered to be possible collision partners.

Once the cost assignment procedure of each separate behavior is finished, we have to find a
way how to combine the different results in order to derive the overall navigation costs. This is
accomplished using another heuristic cost function. A possible heuristics for the robot in Figure
1 using a weighted sum of the previously computed costs would for instance be:

h(Cseek7 Coa) _ S_J&)Cseek_i_ Coa (1)

whereCse¢kandC°2 denote the costs derived from the seek and obstacle avoidance behaviors.

5 Navigation Using Inverse Steering Behaviors 6

rectRegiori01) rectRegioi(67)

A

@ Destination

" rectRegiorif,)

Figure 2: Assigning of rectangular regions for every direction.

The result of functiorh is the total navigation cost of the currently processed direction. Table 1
shows the costs determined for the robot in Fig. 1. As lower costs indicate better solutions, the
optimal steering direction is the one which minimize® the current time step. In our example

this direction i3.

8, 6, 063 0,
CSeeK 80 40 40 80
coa 0O 1 0 O

h(cseekcea) | 1 1.5 05 1

Table 1: Navigation costs for the robot in Fig. 1

The general algorithm for selecting a steering direction is given as Algorithm 1. It takes three
input parameters. The borders of the sector to be searched for steering directions are denoted
by @min and @max. The third parameten gives the number of discrete directions betwer
and @max to be evaluated with inverse steering behaviors. The direction with minimal costs is
returned by the algorithm.

The main difficulty of this approach is to find a “good” heuristics producing an appropriate
mapping from directions to costs. The weight of each behavior involved in the navigation process
is set based on its priority and range of results. For a small number of behaviors these weights
can be derived using prior human knowledge or through empirical testing. But if the number
of subtasks in navigation grows higher, other techniques for extracting the weights, such as
reinforcement learning or genetic algorithms have to be used.

5 Navigation Using Inverse Steering Behaviors 7

In general it can be said, that in our approach favorable navigation appears as side effect of
minimizing the costs related to each involved behavior. The robot example given in this section
can for instance be compared to a car driver’s tendency to minimize his expenses, which is done
by both, economizing his fuel and avoiding any accidents.

Algorithm 1 steeringDirection(Omin, ®max,N) — Calculation of the steering direction with
minimal costs betweeqmin and@max by evaluatingn discrete directions.
{Part 1: Discretization of steering directiohs
A — (@max— @min) /N
fori=0tondo
6 — Qmin+A X
end for

{Part 2: Apply Inverse Steering Behavi¢rs
LetS,..., Sy be the relevant Inverse Steering Behaviors
for k=1to mdo
(cK, ..., k) « S(Bo,...,0n)
end for

el eIl
W N RO

. {Part 3: Apply heuristics

: min_costs— o {Set minimal costs t®}

: | +—0 {Setindex of selected direction t$ O
. for j=0tondo

e
o g N

17: Ccur« h(c}, ...,C}") {Calculate costs for current directign
18: if min_costs> cur then

19: min_costs— cur {Update minimal cosis

20: | — j {Update (index of) selected directipn

21: endif

22: end for

23: return 6, {6 is the direction producing minimal costs

5.1 Moving Obstacles

Decisions based only on momentary information can heavily degrade the agent’s ability to avoid
obstacles. This is especially true, when the agent’s environment is dynamically changing or when
opponents try to keep the agent from achieving his goal. The efficiency of navigation in such
environments strongly relies on the agent’s ability to predict future situations and include them
in the current decision process. This demands a higher amount of abstraction, as it involves both
predicting possible collisions with nearby moving objects and altering its own direction based
on their current speed and orientation[Reynolds, 199Pa behavior calledinaligned collision

6 Application in Robotic Soccer 8

avoidancehas been proposed, which tries to apply a corrective steering by predicting the closest
approach between the agent and opponents or moving objects. This method, however, assumes
that both, agent and moving obstacle are eager to avoid a collision.

In order to keep our approach consistent for both, mobile and stationary obstacles we in-
vestigated geometric representations of an object’'s motion. Rather than adding supplementary
handling for moving objects, we perform the same method as in Section 5, but with revised
shapes based on the obstacles velocity and heading. These shapes reprasiturtrie region
of an obstacle. We assume that the mobile obstacle can reach any position within this influence
region faster than the agent, so all of them must be avoided. This implies, that the agent’s task is
to find a way which has no intersections with any influence region. Therefore instead of check-
ing for intersections of the bounding sphere of an object with the rectangular representation of
the currently pursued direction, we check for intersections between the influence region of an
object with our direction. For the trivial case that the object is stationary, the influence region
equals the obstacle’s bounding sphere, which results in the same process as described above. For
the non-trivial case, that the object is moving, we distinguish between two types of geometric
representations chosen with respect to the obstacle’s means of locomotion.

For domains with non-holonomic mobile objects, influence regions are represented by a semi-
circle in the back of the obstacle and a semi-ellipse in its front. The diameters of both shapes
are proportional to the velocity of the observed obstacle, as it elongates with speed (a similar
approach has been taken Reynolds, 200Pfor defining neighborhood relationships). This rep-
resentation is due to the fact, that non-holonomic objects or robots have less degrees of freedom
than the total number of degrees available. This means, that such an object would have first to
turn and then to accelerate in two separate time steps, if it would have to change its heading.
The more the direction to a goal position deviates from the current heading, the harder are they
to reach. Because of this limitation, positions which lie in the opposite direction of the object
take much more time to reach. For holonomic objects however every position within a particular
radiusr takes the roughly same amount of time to reach, as such objects have a higher amount of
controlable degrees. Therefore the influence region of the latter are represented by circles with
radiusr, which can be computed using the object’s speed scaled by some constant factor.

The resulting influence regions are then used to replace the original obstacle during the colli-
sion detection step. This means that, rather than determining if there is a collision (intersection)
between the bounding spheres of all obstacles and currently processed way, we determine the
collisions between the influence regions and the latter way. This is shown in Algorithm 2.

6 Application in Robotic Soccer

In this section we describe the implementation of a dribbling skill for the RoboCup Simulation
League with the help of inverse steering behaviors. After a brief introduction to the Simulation
League we present our approach to dribbling with integrated obstacle avoidance. The section is
finally closed with some experimental results.

6 Application in Robotic Soccer

holonomic

static
obstacle

\ non-holonomic

mobile obstacle with influence regions

Figure 3: Influence region of a mobile obstacle compared to a static obstacle-wizh« |V|.

Algorithm 2 ObstacleAvoidance((Yo,.-.,Yn))
Example Inverse Steering Behavior: Obstacle avoidance.

[

: {calculate set of influence regions of relevant objects
: R« getinfluenceRegions (Yo,Yn)
: fori=0tondo
count <— 0
forall Rj € Rdo
if R; N rectRegion(;) # 0then
count < count+1
end if
end for
: end for
: return (coun,...,count,)

© 0N R WD

el =
()

6 Application in Robotic Soccer 10

6.1 RoboCup Simulation League

The Simulation LeaguENodaet al., 1999 is part of the RoboCup InitiativERoboCup Federa-

tion,], which aims at fostering research in robotics, multiagent-systems and Al. The domain of
RoboCup is robotic soccer where teams of robots have to work together in order to win soccer
matches against other robot teams. Researchers have the opportunity to present their results and
evaluate their approaches under real world conditions during the annual international RoboCup
World Championships as well as a variety of local events.

In the Simulation League two teams of 11 autonomous agents compete in a simulated soccer
match. The two dimensional, discrete-time simulation is carried out in a client/server style by the
RoboCup Soccer Simulat¢or Soccer Servefor short)[Chenet al, 2003. The Soccer Server
maintains a model of the world containing the positions of all objects on the field, as well as
additional information about them, e.g. the velocities of moving objects or the remaining stamina
of all players. In each simulation step clients may semecommand for moving or manipulating
the ball, e.gdash kick or turn, and several minor commands to the server. The effects of these
commands are taken into account by the simulator when the world model is updated for the next
step. Sensory input is sent to the agents at regular intervals, but asynchronously to the simulation
steps.

The commands provided by the server allow for very primitive interaction with the environ-
ment only, so in order to successfully achieve higher level behaviors and abstract goals more
complex abilities have to be synthesized from them. Thus in the lower levels of a soccer playing
agent a set o$kills like passing, shooting or intercepting the ball is implemented. The overall
performance of an agent and even the whole team is heavily influenced by these skills.

6.2 Dribbling

One important skill, callediribbling, is defined as the ability to move towards a target point,
while keeping possession of the ball. This confronts an agent with a hard problem. In soccer
the player controlling the ball is generally attacked by one or more opponents. Hence he has to
find a strategy how to outplay them, while still approaching his target point. The latter includes
several subtasks such as kicking and intercepting the ball, and avoiding adversaries and sidelines.
Obviously, this results in a complex navigation task, as it involves the use of different behaviors
in a real-time, dynamic, and rapidly changing environment with limited resources (time and
stamina). Further difficulties are added to the problem, as a dribbling agent is in general slower
as his opponents. This is due to the fact that many of his action opportunities are spent kicking
rather than dashing, as every time step only one such action is possible. Also, in order to turn
into a given direction without losing control of the ball, a sequence of 2 to 3 primitive actions is
needed.

Building upon the above analysis of the dribbling skill, we identified the following tasks to be
taken out. Both the tasks and their equivalent steering behaviors are given in Table 6.2.

As can be seen in this table, the dribbling process can be expressed as a combination of

6 Application in Robotic Soccer 11

Task Steering Behavior
Approach target positiof] Seek

Intercept the ball Pursuit

Avoid enemies Obstacle avoidance

Staying on the play field| Containment
Controlling the ball -

Table 2: Behaviors involved in the dribbling skill.

Opponent A L4
PP Target

Player q
to, ,,,,,,,,,,,,, . Position
L O >

‘ Opponent B

Steering Vector

Sideline

Figure 4: Player is trapped near the sideline.

different steering behaviors. However, a straightforward implementation of the idea revealed
several shortcomings of this approach. The observed properties of the resulting dribbling be-
havior confirmed most of the theoretical considerations made in Section 3. Due to the lack of
context awareness, many cases appeared where the resulting direction after performing obstacle
avoidance would directly point at a second opponent. As a consequence the agent would make
oscillating turns between different opponents without dashing forward. A more severe problem
occurred if a player tried successively to outplay two opponents close to the sideline. In such sit-
uations the repeated avoidance maneuvers would often lead him into facing the sideline, where
he would then be trapped and thus an easy prey for the approaching opponents (cf. Fig. 4).
The aforementioned problems are inherent to various other navigation and obstacle avoidance
techniques and were already identified as limitationsaténtial field methoddFM) in[Boren-

stein and Koren, 1989Especially the drawback of being trapped near the sideline bares great
similarity tolocal-minimaproblems in PFM.

6 Application in Robotic Soccer 12

After tests with selection and blending technigyBynolds, 199Pand parameter adjust-
ments, we incorporated oumverse steering behaviapproach into the dribbling skill. First
we distinguished between sequentially switching and parallelly firing of behaviors. While the
pursuit and ball control behavior are switched sequentially (if the ball must be intercepted or
is endangered to get out of control), the seek, avoidance and containment behaviors are used
in parallel every time step determining for collision free and valid paths. This means that we
have to find a heuristic cost function, which arbitrates between the latter three behaviors. The
resulting function would then be used to evaluate and rate possible steering directions in each
time step. Thus a solution can be found which satisfies all criteria of interest (seek, avoidance,
containment) up to some extent.

6.3 Behaviors, Criteria and Heuristics

Crucial points in the inverse steering behavior model explained in this paper are, the cost assign-
ment process of currently active behaviors and the choice of the arbitrating heuristic. In the first
process, each active behavior receives a set of possible steering directions, to which it assigns
costs according to some predefined criteria. The arbitrating heuristic then takes the resulting
costs, in order to determine the ideal steering direction for the momentary situation. As a first
step for applying this approach, we outlined for each behavior the criterion, based on which it
assigns costs.

Obstacle Avoidance In order to avoid being hit by any occurring obstacles the agent should
prefer directions with fewer influence regions of obstacles. An example algorithm for the
cost assignment process of this behavior is given in Algorithm 2.

Seek In order to successfully approach his goal, the agent has to minimize the deviation to the
direction of the target point. Therefore the difference between his current orientation and
the “optimistic optimal” one is taken as a criterion for this behavior.

Containment The containment behavior tries to keep the agent from leaving the play field.
Therefore we use his predicted position (linearly extrapolated) in the currently processed
direction after 5 time stepgos 5. If pos, s is inside the play field, then no costs will be
assigned. However, if the predicted position lies outside the play field, then the distance
betweenpos 5 and the nearest sideline is returned as a cost.

Using the above criteria, we derive for each direction its c6§tsC§®kandC§o™.

As next step we have to design the heuristic function transforming the separate costs into an
overall cost value. Basically we have to assign a weight to each behavior, denoting its contribu-
tion to the total costs of a direction. For our dribbling skill, we derived these weights empirically
after various tests, resulting in the following heuristics:

g @

1
oa cont

6 Application in Robotic Soccer 13

Target

Player
Ball (5 \ ciom=1

. 2 Opponents Cgeek: 45
‘ / rectRegiond)

Sideline \\l\\ Distance: 1m

Predicted player position

Figure 5: Calculating costs for directidh

As can be seen in (2) the primary contribution to the costs of a dire€tisndone by the
obstacle avoidance behavior. This is due to the fact that one of the most important principles in
dribbling is the avoidance of any possible collision with nearby opponents. The least influence
on the cost functiorh(Cy) has the seek behavior, which penalizes the deviation between the
"optimistic optimal” direction (see Section 5) and the agents current heading. In all situations
where the agent is not heading directly into an obstacle or into a sideline however, the direction
costs will be based only on the outcomeG§F®X In such situations, both variabl€§? and
cgom take the value 0, indicating that no avoidance or containment maneuvers have to be done.
Hence the agent will choose his steering direction solely according to the seek behavior and thus
follows his high level goal.

6.4 Experimental Results

With our dribbling player we conducted several experiments with static and dynamic obstacles.
For this end we used both, artificially created scenarios and real soccer games, mostly in the Sim-
ulated Soccer Internet Leag{@imulated Soccer Internet Leagdea spin-off of the RoboCup
Simulation League.

In the artificial scenarios a player repeatedly had to dribble the ball from a given start position
to a postion on the field which allowed for a clear scoring opportunity. All obstacles on the field
had to be avoided. Figure 6 shows the trajectory of the agent as he has dribbled across almost
the whole field to reach a save scoring position.

Our tests showed, that our approach to dribbling based on inverse steering behaviors allows
for flexible behaviors in the agent and fast reactions to changes in the environment while staying
focused on the given high level goal.

Many of the situations that cannot be handled by agents using classical steering behaviors
for navigation at all are managed by our dribbler without even losing the ball, e.g. the situation
shown in Fig. 4.

7 Related Work 14

Figure 6: Dribbling around static obstacles.

Up to now we were only able to conduct qualitative tests, but for the near future exhaus-
tive testing of the approach with statistical methods and comparisons to other approaches are
planned.

7 Related Work

Steering behaviors found their way to robotic soccer in the early days of RoboCup. In 1998
both the simulated and the real (small-size) robot team from Carnegie Mellon University used
an approach called Strategic Positioning using Attraction and Repulsion (§vaR3oet al.,
1999. SPAR can be seen as a variant of the flocking behd®eynolds, 198J7 in contrast to
earlier positioning approaches in robotic soccer SPAR takes into account not only the position
of the ball but also positions of other players on the field. Two elements responsible for flocking
behavior,repulsionandattractionl, were realized by a method that can be seen as an extension
of potential field methods. Forces repulse and attract players from and to the other objects on the
field, i.e. the teammates, opponents, ball and goals. Another ingredient for flocking described
in [Reynolds, 198J7 alignment was not used in SPAR.

Situation Based Strategic Positioning (SB$Rgiset al, 2001 is a second approach in this
line from the FC Portugal simulator team. With respect to the positioning, SBSP is more sim-
plistic than the approach used in SPAR, taking mainly the attraction of the ball into account.
In terms of steering behaviors the team perfoteaer following a kind of flocking behavior,

1in [Reynolds, 198J7they are called¢tohesiorandseparation

8 Conclusions and Future Work 15

using the ball as leader of the flock. To add further flexibility, SBSP is wrapped by a mechanism
called DPRE (Dynamic Positioning and Role Exchange), which extends earlier wogtdnye
and Veloso, 1998

In the CMUnited-98 small-size robots team, a simple steering behavior built into the motion
control leads to obstacle-free paths in a dynamic environii@ewling and Veloso, 19991f an
obstacle occurs too close in the target direction of the robot, the steering vector is adjusted so
that it runs tangent to a preset circle around the object in question.

8 Conclusions and Future Work

In our paper we presented a new approach to steering. With inverse steering behaviors decisions
are made by evaluating costs of a discrete set of possible solutions. Preserving advantages of
the original approach, inverse steering behaviors are still reactive, fast to calculate, and easy to
combine with each other to build more complex behaviors. Because our agents evaluate several
options before steering, the actions to be performed are better motivated. Additionally, it is
easier to solve the problem of arbitration inherent to steering behaviors using costs as a measure
of quality.

We successfully implemented our approach in the simulated soccer world for an agent drib-
bling the ball while avoiding different obstacles.

For future work we are planning to investigate on using machine learning techniques to sim-
plify building heuristics and to combine our hand crafted behaviors with machine learned ones.

References

[Bonakdariaret al,, 1999 Esmail Bonakdarian, James Cremer, Joseph Kearney, and Pete
Willemsen. Generation of ambient traffic for real-time driving simulation.Inh@ge Soci-
ety Conferencgepages 123-133, Scottsdale, AZ, USA, August 1998.

[Borenstein and Koren, 1982Johann Borenstein and Yoram Koren. Real-time obstacle avoid-
ance for fast mobile robots. IEEE Transactions on Systems, Man, and Cybernetics
19(5):1179-1187, 1989.

[Bowling and Veloso, 1999Michael Bowling and Manuela Veloso. Motion control in dy-
namic multi-robot environments. IIRroceedings of the1999 IEEE International Symposium
on Computational Intelligence in Robotics and Automation (CIRA,’98lume November,
pages 168-173, 1999.

[Chenet al, 2003 Mao Chen, Klaus Dorer, Ehsan Foroughi, Fredrik Heintz, ZhanXiang
Huang, Spiros Kapetanakis, Kostas Kostiadis, Johan Kummeneje, Jan Murray, Itsuki Noda,
Oliver Obst, Pat Riley, Timo Steffens, Yi Wang, and Xiang YiRoboCup Soccer Server
2003. Manual for Soccer Server Version 7.07 and later (obtainablessenver.sf.net).

References 16

[Feurtey, 200D Franck Feurtey. Simulating the collision avoidance behavior of pedestrians.
Master’s thesis, University of Tokyo, School of Engineering, February 2000.

[Helbinget al, 2004 Dirk Helbing, llles Farkas, and Taas Vicsek. Simulating dynamical
features of escape panidaturg 407:487—-490, 2000.

[Koren and Borenstein, 19pIyoram Koren and Johann Borenstein. Potential field methods and
their inherent limitations for mobile robot navigation. Pnoceedings of the IEEE Int. Conf.
on Robotics and Automatippages 1398-1404, 1991.

[Nareyeket al,, 2003 Alexander Nareyek, Nick Porcino, and Mark Kolenski. Al interface stan-
dards: The road ahead. A Roundtable Discussion of the 2003 Game Developers Conference,
March 2003.http://www.ai-center.com/events/gdc-2003-roundtable/

[Nodaet al,, 1999 Itsuki Noda, Hitoschi Matsubara, Kazuo Hiraki, and lan Frank. Soccer
Server: a tool for research on multi-agent systeAyplied Artificial Intelligence 1998.

[Reiset al, 2001 Luis P. Reis, Nuno Lau, and Eegio C. Oliveira. Situation based strategic
positioning for coordinating a team of homogeneous agents. In Markus Hannebauer, Jan
Wendler, and Enrico Pagello, editoBalancing Reactivity and Social Deliberation in Multi-
Agent Systemasumber 2103 in LNCS, pages 175-197. Springer, 2001.

[Reynolds, 1987 Craig W. Reynolds. Flocks, herds, and schools: A distributed behavioral
model. Computer Graphics21(4):25-34, 1987.

[Reynolds, 199P Craig W. Reynolds. Steering behaviors for autonomous characters, 1999.
[Reynolds, 200D Craig W. Reynolds. Interaction with groups of autonomous characters, 2000.

[RoboCup Federation, Official homepage of the RoboCup Federation.
http://www.robocup.org/

[Simulated Soccer Internet LeaglieSimulated Soccer Internet League.
http://sserver.sf.net/league/index.html

[Stone and Veloso, 1998Peter Stone and Manuela Veloso. Task decomposition and dynamic
role assignment for real-time strategic teamworkAgrent Theories, Architectures, and Lan-
guagespages 293-308, 1998.

[Velosoet al, 1999 Manuela Veloso, Peter Stone, and Michael Bowling. Anticipation: A key
for collaboration in a team of agents. Trhird International Conference on Autonomous
Agents (Agents’99)1999.

Available Research Reports (since 1998):

2003 9/2002 Jirgen Ebert, Bernt Kullbach, Franz Lehner.
4. Workshop Software Reengineering (Bad
12/2003 Heni Ben Amor, Oliver Obst, Jan Murray. Honnef, 29./30. April 2002).

Fast, Neat and Under Control: Inverse Steerin

Behaviors for Physical Autonomous Agents. 8/2002 Richard C. Holt, Andreas Winter, Jingwei Wu.

Towards a Common Query Language for

11/2003 Gerd Beuster, Thomas Kleemann, Bernd Reverse Engineering.
Tr;omasMIA - A Multl;Agent Il_locat|on Based 7/2002 Jurgen Ebert, Bernt Kullbach, Volker Riediger,
Information Systems for Mobile Users in 3G Andreas WintelGUPRO — Generic

Networks.

10/2003 Gerd Beuster, Ulrich Furbach, Margret
GroR3-Hardt, Bernd Thomagutomatic
Classification for the Identification of

Understanding of Programs, An Overview.

6/2002 Margret GroRR-Hardt.Concept based querying
of semistructured data.

Re|ati0nships in a Metadata Repository_ 5/2002 Anna Simon, Marianne Valeriubser
) . Requirements — Lessons Learned from a
9/2003 Nicholas Kushmerick, Bernd Thomas. Computer Science Course.
Adaptive information extraction: Core))

.) Qualitative Velocity and Ball Interception.
8/2003 Bernd ThomasBottom-Up Learning of Logic) ,
Programs for Information Extraction from 3/2002 Peter BaumgartneA First-Order Logic

Hypertext Documents. Davis-Putnam-Logemann-Loveland Procedure.

7/2003 Ulrich Furbach. Al - A Multiple Book 2/2002 Peter Baumgartner, Ulrich Furbach.
Review. Automated Deduction Techniques for the

Management of Personalized Documents.

1/2002 Jurgen Ebert, Bernt Kullbach, Franz Lehner.
3. Workshop Software Reengineering (Bad
5/2003 Oliver Obst.Using Model-Based Diagnosis to Honnef, 10./11. Mai 2001).
Build Hypotheses about Spatial Environments.

4/2003 Daniel Lohmann, Urgen EbertA

Ge_neralization of the Hyperspace Approach 13/2001 Annette PookSchlussbericht “FUN -
Using Meta-Models. Funkunterrichtsnetzwerk”.

6/2003 Peter Baumgartner, Ulrich Furbach, Margret
Grol3-Hardt.Living Books.

2001

3/2003 Marco Kogler, Oliver ObstSimulation 12/2001 Toshiaki Arai, Frieder Stolzenburg.
League: The Next Generation. Multiagent Systems Specification by UML
2/2003 Peter Baumgartner, Margret GroR-Hardt, Alex Statecharts Aiming at Intelligent
Sinner.Living Book — Deduction, Slicing and Manufacturing.
Interaction. 11/2001 Kurt LautenbachReproducibility of the
1/2003 Peter Baumgartner, Cesare Tinellihe Model Empty Marking.
Evolution Calculus. 10/2001 Jan Murray.Specifying Agents with UML in

Robotic Soccer.

9/2001 Andreas WinterExchanging Graphs with

12/2002 Kurt LautenbachLogical Reasoning and GXL.
Petri Nets. 8/2001 Marianne Valerius, Anna SimoBlicing Book

11/2002 Margret Grof3-HardtProcessing of Concept Ie;:]hné)logy— eine neue Technirféine neue
Based Queries for XML Data. ehre=.

10/2002 Hanno Binder, 8rdome Diebold, Tobias 7/2001ABernt Kl;]"tbaéh’ \b/:)Iksr Riedigsﬁt()jldintg: A(\; f
Feldmann, Andreas Kern, David Polock, pproach 1o Enable Frogram Understanding o

Dennis Reif, Stephan Schmidt, Frank Schmitt, Preprocessed Languages.

Dieter Zobel.Fahrassistenzsystem zur 6/2001 Frieder Stolzenburg-rom the Specification of
Unterstitzung beim Rckwdrtsfahren mit Multiagent Systems by Statecharts to their
einachsigen Gespannen. Formal Analysis by Model Checking.

2002

5/2001 Oliver Obst.Specifying Rational Agents with 8/99 Jens Woch, Friedbert Widmanmplementation

Statecharts and Utility Functions. of a Schema-TAG-Parser.
4/2001 Torsten Gipp, Urgen EbertConceptual 7/99 Jurgen Ebert, and Bernt Kullbach, Franz
Modelling and Web Site Generation using Lehner (Hrsg.) Workshop
Graph Technology. Software-Reengineering (Bad Honnef, 27./28.
3/2001 Carlos I. Chefievar, dirgen Dix, Frieder Mai 1999).
Stolzenburg, Guillermo R. SimaRelating 6/99 Peter Baumgartner, Michaelikin. Abductive
Defeasible and Normal Logic Programming Coreference by Model Construction.

through Transformation Properties.
5/99 Jurgen Ebert, Bernt Kullbach, Andreas Winter.

2/2001 Carola Lange, Harry M. Sneed, Andreas GraX — An Interchange Format for
Study.

4/99 Frieder Stolzenburg, Oliver Obst, Jan Murray,
Bjorn Bremer.Spatial Agents Implemented in a
Logical Expressible Language.

1/2001 Pascal von Hutten, Stephan Philippi.
Modelling a concurrent ray-tracing algorithm
using object-oriented Petri-Nets.

3/99 Kurt Lautenbach, Carlo Simotrweiterte
2000 Zeitstempelnetze zur Modellierung hybrider
Systeme.

8/2000 Jurgen Ebert, Bernt Kullbach,

Franz Lehner (Hrsg.)2. Workshop Software
Reengineering (Bad Honnef, 11./12. Mai
2000).

7/2000 Stephan PhilippiAWPN 2000 - 7. Workshop 1/99 P(:/Ter Balgmg?rtner, J.D. Hor:con,Nl?rL_Jce |S|5|e3u|an
Algorithmen und Werkzeugeif Petrinetze, erge Path Improvements for Minimal Mode

2/99 Frieder Stolzenburg.oop-Detection in
Hyper-Tableaux by Powerful Model
Generation.

Koblenz, 02.-03. Oktober 2000 . Hyper Tableaux.
6/2000 Jan Murray, Oliver Obst, Frieder Stolzenburg. 1998

Towards a Logical Approach for Soccer Agents

Engineering. 24/98 Jurgen Ebert, Rogeri@tenbach, Ingar Uhe.
5/2000 Peter Baumgartner, Hantao Zhang (Eds.). Meta-CASE Worldwide.

FTP 2000 — Third International Workshop on
First-Order Theorem Proving, St Andrews,
Scotland, July 2000.

4/2000 Frieder Stolzenburg, Alejandro J. Gaeg
Carlos I. Chefievar, Guillermo R. Simari.
Introducing Generalized Specificity in Logic
Programming. 21/98 Jurgen Dix, V.S. Subrahmanian, George Pick.

Meta-Agent Programs.

23/98 Peter Baumgartner, Norbert Eisinger, Ulrich
Furbach.A Confluent Connection Calculus.

22/98 Bernt Kullbach, Andreas WinteQuerying as
an Enabling Technology in Software
Reengineering.

3/2000 Ingar Uhe, Manfred Rosendat8pecification
of Symbols and Implementation of Their 20/98 Jurgen Dix, Ulrich Furbach, Ilkka Niemal.

Constraints in JKogge. Nonmonotonic Reasoning: Towards Efficient
2/2000 Peter Baumgartner, Fabio Massac@ihe Calculi and Implementations.
Taming of the (X)OR. 19/98 Jurgen Dix, Steffen Blldobler. Inference
1/2000 Richard C. Holt, Andreas Winter, Andy $th Mechanisms in Knowledge-Based Systems:
GXL: Towards a Standard Exchange Format. Theory and Applications (Proceedings of WS
at K1'98).
1999

18/98 Jose Arrazola, Urgen Dix, Mauricio Osorio,
Claudia ZepedaWell-behaved semantics for

10/99 Jurgen Ebert, Luuk Groenewegen, Roger Logic Programming.

SittenbachA Formalization of SOCCA.

9/99 Hassan Diab, Ulrich Furbach, Hassan Tabbara.
On the Use of Fuzzy Techniques in Cache
Memory Managament. 16/98 Jurgen Dix.The Logic Programming Paradigm.

17/98 Stefan Brass,rgen Dix, Teodor C.
PrzymusinskiSuper Logic Programs.

15/98 Stefan Brass,ifrgen Dix, Burkhard Freitag, 7/98 Andreas Schmidsolution for the counting to

Ulrich Zukowski.Transformation-Based infinity problem of distance vector routing.
3?;%?1“[) Computation of the Well-Founded 6/98 Ulrich Furbach, Michael Kihn, Frieder

StolzenburgModel-Guided Proof Debugging.
14/98 Manired KampGReQL — Eine Anfragespraches gg peter Baumgartner, Dorothea Sifer. Model

fur das GUPRO-Repository — Elimination with Simplification and its
Sprachbeschreibung (Version 1.2). Application to Software Verification.

12/98 Peter Dahm, Orgen Ebert, Angelika Franzke, 4/98 Bernt Kullbach, Andreas Winter, Peter Dahm,
Manfred Kamp, Andreas WintéfGraphen und Jurgen EbertProgram Comprehension in
EER-Schemata — formale Grundlagen. Multi-Language Systems.

11/98 Peter Dahm, Friedbert Widmanbas 3/98 Jurgen Dix, Jorge Lobd.ogic Programming
Graphenlabor. and Nonmonotonic Reasoning.

10/98 Jorg Jooss, Thomas MarXVorkflow Modeling 2/98 Hans-Michael Hanisch, Kurt Lautenbach, Carlo
according to WfMC. Simon, Jan Thiem&eitstempelnetze in
technischen Anwendungen.
9/98 Dieter Zobel.Schedulability criteria for age

constraint processes in hard real-time systemd/98 Manfred KampManaging a Multi-File,

Multi-Language Software Repository for
8/98 Wenijin Lu, Ulrich FurbachDisjunctive logic Program Comprehension Tools — A Generic
program = Horn Program + Control program. Approach.

